Contents

Electronic Control Systems

http://www.ent.mrt.ac.lk/~rohan/teaching/EN2142/EN2142.html

Ref Book: Classical Control Systems, ISBN 978-81-8487-194-4

Prof. Rohan Munasinghe Department of Electronic and Telecommunication EngineeringFaculty of EngineeringUniversity of Moratuwa 10400

- 1. Historical Control Systems : "**Feedback by Design**"
- 2. Mathematical Modeling of plants/systems
	- **I** Input output relationship as an ordinary differential equation (ODE)
- 3. Determining the response of the plant/system
	- $\textcolor{orange}\blacksquare$ Poles, theoretical solution (Laplace)
	- Simulation (MatLab) + performance verification
- 4. Design a feedback control system
- 5. Frequency domain analysis of Control systems
	- $\textcolor{red}{\bullet}$ Bode plots (Mag/Phase response)
- 6. PID: Most famous industrial controller
- 7. Controller implementation: Analog (OPAmp)
- 8. Digital Control
	- 1. Digital Redesign (of analog controller)
	- 2. Digital implementation (of analog controller)²

1. Historical Control Systems: "feedback by design"

- 250 BC flow regulated water clock
	- Ctesibius, a Greek Inventor

1. Historical Control Systems:

• Self Re-filling mechanism (200BC)– Philon, a Greek inventor

1

1. Historical Control Systems:

• Weight Regulated Liquid Filling Device(1st Century AD)

2. Mathematical Modeling of Plant/System

Prof. Rohan Munasinghe Department of Electronic and Telecommunication EngineeringFaculty of EngineeringUniversity of Moratuwa 10400

1. Historical Control Systems:

Plant Model: Mechanical System

•Shock absorber

- •Spring resists displacement (reactive force is prop to displacement)
- Damper resists speed (reactive force is proportional to speed)

Second order model (2.2) $m\ddot{u}(t) = f - k u(t) - b\dot{u}(t)$ (2.1)

Plant Model: Electrical System

Plant Model: Electrical System

$$
\dot{v}(t) + \frac{R_1 + R_2}{R_1 R_2 C} v(t) = \frac{1}{R_1 C} v_s(t)
$$

\n
$$
\dot{v}(t) + av(t) = bv_s(t)
$$

\n
$$
a = \frac{R_1 + R_2}{R_1 R_2 C} \quad \dot{b} = \frac{1}{R_1 C}
$$
 (2.3)

What have we learned so far?

- System models are ordinary differential equations (ODEs).
- System complexity is represented by the model order
- The response (output) of the plant can be obtained by solving the model ODE for a given forcing function (input)
- Laplace transforms can be used to solve ODEs efficiently

10

Laplace Transforms

System Response with Laplace

• RC Circuit Model $-$ When transformed into Laplace domain $\mathfrak{X}\{\,\}$ - forward transformation $\dot{v}(t) + av(t) = bv_s(t)$ (2.3)

• Response (Method 1: Partial Fraction)- When transformed back to time domain $\mathcal{I}^{\text{-}1}\{\}$ - inverse transformation

$$
v(t) = v(0)e^{-at} + \frac{b}{a}V\left(1 - e^{-at}\right)
$$
 (3.49)

11

System Response with Laplace

Response (Method 2: Convolution Integral)

(3.47),
$$
V(s) = \frac{1}{s+a}v(0) + \frac{b}{s(s+a)}V
$$

$$
L^{-1}\left\{\frac{1}{s}\right\} = u_s(t) \qquad L^{-1}\left\{\frac{1}{s+a}\right\} = e^{-at}
$$

• Transforming back to time domain

 \overline{a}

$$
v(t) = v(0)e^{-at} + bV_s \int_0^t e^{-a\tau} u_s(t-\tau)d\tau
$$

\n
$$
= v(0)e^{-at} + bV_s \int_0^t e^{-a\tau} .1d\tau
$$

\n
$$
= v(0)e^{-at} + \frac{-b}{a}V_s e^{-a\tau}|_0^t
$$

\n
$$
= v(0)e^{-at} + \frac{b}{a}V_s (1 - e^{-at})
$$

\n
$$
= \underbrace{v(0)e^{-at}}_{d} + \underbrace{\frac{b}{a}V_s (1 - e^{-at})}_{\text{Exogenous Response}}
$$

\n
$$
= \underbrace{v(0)e^{-at}}_{d} + \underbrace{\frac{b}{a}V_s (1 - e^{-at})}_{\text{Exogenous Response}}
$$

Homogeneous Response

Exogenous Response

%% First Order Response: RC Circuit R1=1000: R2=2000: C=200*10^-6: % circuit components $a = (R1 + R2) / (R1 * R2 * C)$: $b = 1 / (R1 * C)$: % model coefficients $v0=2$: % initial condition $dur=0.6$ % simulation duration $t = [0:0.01: dur];$ %% Homogeneous Response $yH=v0*exp(-a*t);$ %% Exogenous Response $yE = (b/a) * (1-exp(-a*t))$ %% Total Response $yT = yH + yE$ %% Plot graphs subplot(311); $plot(t, yH)$; $axis([0 dur 0 2]);$ ylabel('Homogeneous response [V]'); grid on;

Matlab Simulation: RC Circuit

Simulation:

Matlab

Circuit

 \overline{c}

 $\tilde{\mathbf{r}}$

subplot(312); plot(t,yE); $axis([0 \text{ dur } 0 2]);$ ylabel('Exogenous response [V]') grid on.

subplot(313); plot(t, yT); axis($[0 \text{ dur } 0 2]$); 14ylabel('Total response [V]'); xlabel('time [s]'); grid on;

-
-
-

System Response with Laplace

 $\ddot{y}(t) + 2\sigma \dot{y}(t) + \rho y(t) = \eta f(t)$ (3.51)

• Mechanical System Response

(2.2)
$$
\ddot{y}(t) + \frac{b}{m}\dot{y}(t) + \frac{k}{m}y(t) = \frac{1}{m}f(t)
$$

Where

 $2\sigma = \frac{b}{m}, \rho = \frac{k}{m}, \text{ and } \eta = \frac{1}{m}$

• Transforming into Laplace domain

$$
s^{2}Y(s) - sy(0) - y'(0) + 2\sigma[sY(s) - y(0)] + \rho Y(s) = \eta F(s)
$$

\n
$$
(s^{2} + 2\sigma s + \rho)Y(s) - y(0)s - [2\sigma y(0) + y'(0)] = \eta F(s)
$$

\n
$$
Y(s) = \frac{y(0)s + [2\sigma y(0) + y'(0)]}{(s^{2} + 2\sigma s + \rho)} + \frac{\eta}{(s^{2} + 2\sigma s + \rho)}F(s)
$$
\n(3.52)

• There exist three different responses based on the determinant of the denominator polynomial (characteristic equation)

$$
(2\sigma)^2 - 4 \times 1 \times \rho = 4(\sigma^2 - \rho) \quad \longleftarrow \Delta(s) = s^2 + 2\sigma s + \rho = 0 \stackrel{\text{17}}{\longleftarrow}
$$

System Response: Partial Fractions

• **Case 1:**
$$
\sigma^2 - \rho > 0
$$
 ($b > 2\sqrt{mk}$)
\n(3.52)
$$
Y(s) = \frac{K_1 s + K_2}{(s - \alpha_1)(s - \alpha_2)} + \frac{\eta}{(s - \alpha_1)(s - \alpha_2)} F(s) \leftarrow F(s) = \frac{A}{s}
$$

where $\alpha_1, \alpha_2 = -\sigma \pm \sqrt{\sigma^2 - \rho}$ negative, real, distinct poles Poles are determined by the system parameters

Case 1: Partial FractioningUsing coverup method (see Appendix)

$$
Y(s) = \frac{K_1s + K_2}{(s - \alpha_1)(s - \alpha_2)} + \frac{\eta}{(s - \alpha_1)(s - \alpha_2)} \frac{A}{s}
$$
(3.55)
= $\frac{P_1}{(s - \alpha_1)} + \frac{P_2}{(s - \alpha_2)} + \eta A \left(\frac{Q_1}{(s - \alpha_1)} + \frac{Q_2}{(s - \alpha_2)} + \frac{Q_3}{s} \right)$
where $P_1 = \frac{K_1\alpha_1 + K_2}{\alpha_1 - \alpha_2}, P_2 = \frac{K_1\alpha_2 + K_2}{\alpha_2 - \alpha_1}, Q_1 = \frac{1}{\alpha_1(\alpha_1 - \alpha_2)}, Q_2 = \frac{1}{\alpha_2(\alpha_2 - \alpha_1)}, Q_3 = \frac{1}{\alpha_1 \alpha_2}$
initial conditions
and system parameters

System Response: Partial Fractions

• *Transforming back to time domain*

$$
y(t) = P_1 e^{\alpha_1 t} + P_2 e^{\alpha_2 t} + \eta A \left(Q_1 e^{\alpha_1 t} + Q_2 e^{\alpha_2 t} \right) + \eta A Q_3
$$

\n
$$
= \eta A Q_3 + (P_1 + \eta A Q_1) e^{\alpha_1 t} + (P_2 + \eta A Q_2) e^{\alpha_2 t}
$$
 (3.56)
\nSteady-state
\nresponse
\nTransient response
\n
\nTransient response

System Response: Convolution Integral

• *Case 1: Convolution Integral Method*

$$
(3.55), \quad Y(s) = \left\{ \frac{P_1}{(s - \alpha_1)} + \frac{P_2}{(s - \alpha_2)} \right\} + \eta \left\{ \frac{P_3}{(s - \alpha_1)} + \frac{P_4}{(s - \alpha_2)} \right\} F(s)
$$

$$
= \frac{P_1}{(s - \alpha_1)} + \frac{P_2}{(s - \alpha_2)} + \eta \frac{P_3}{(s - \alpha_1)} F(s) + \eta \frac{P_4}{(s - \alpha_2)} F(s) (3.57)
$$

where
$$
P_3 = \frac{1}{\alpha_1 - \alpha_2}
$$
 $P_4 = \frac{1}{\alpha_2 - \alpha_1}$

System Response with Laplace

• *Transforming back to time domain* $y(t) = P_1 e^{\alpha_1 t} + P_2 e^{\alpha_2 t} + \eta P_3 \int_c^t e^{\alpha_1 (t-\tau)} f(\tau) d\tau + \eta P_4 \int_c^t e^{\alpha_2 (t-\tau)} f(\tau) d\tau$ • *For* $y(t) = P_1 e^{\alpha_1 t} + P_2 e^{\alpha_2 t} + \eta P_3 \int_0^t e^{\alpha_1 (t-\tau)} A d\tau + \eta P_4 \int_0^t e^{\alpha_2 (t-\tau)} A d\tau$ $= P_1 e^{\alpha_1 t} + P_2 e^{\alpha_2 t} + \eta P_3 e^{\alpha_1 t} \int_0^t e^{-\alpha_1 \tau} A d\tau + \eta P_4 e^{\alpha_2 t} \int_0^t e^{-\alpha_2 \tau} A d\tau$ $= P_1e^{\alpha_1t} + P_2e^{\alpha_2t} - \frac{\eta P_3Ae^{\alpha_1t}}{\alpha_1}e^{-\alpha_1\tau}|_0^t - \frac{\eta P_4Ae^{\alpha_2t}}{\alpha_2}e^{-\alpha_2\tau}|_0^t$ $= P_1e^{\alpha_1t} + P_2e^{\alpha_2t} - \frac{\eta P_3Ae^{\alpha_1t}}{\alpha_1}(e^{-\alpha_1t}-1) - \frac{\eta P_4e^{\alpha_2t}A}{\alpha_2}(e^{-\alpha_2t}-1)$ = $P_1e^{\alpha_1 t} + P_2e^{\alpha_2 t} + \frac{\eta P_3 A}{\alpha_1}(1 - e^{\alpha_1 t}) + \frac{\eta P_4 A}{\alpha_2}(1 - e^{\alpha_2 t})$ 21 Steady-state response Transient response

Steady State and Transient Responses

- Transient response
	- Decaying response
	- Depends both on Initial conditions and external forcing function

$$
\left(P_1 + \frac{\eta A P_3}{\alpha_1}\right)e^{\alpha_1 t} + \left(P_2 + \frac{\eta A P_4}{\alpha_2}\right)e^{\alpha_2 t}
$$

- • Steady State Response
	- The sustainable response
	- Depends on external forcing function

$$
-\eta A\left(\frac{P_3}{\alpha_1}+\frac{P_4}{\alpha_2}\right)
$$

22

Simulation:Case 1: Over Damped Shock-Absorber

• System parameters

 $k=125N/cm$ $b=700Ns/cm$ m=50 kg

- Strong damper– Speed is severely resisted
- Then, from (3.51) $\sigma=7$, $\rho=2.5$, and $\eta=0.02$
- Consequently, the two system poles are

 $\alpha_1 = -0.181$ and $\alpha_2 = -13.819$

-ve real distinct poles

 \vert 2

Matlab Code

System Response

System Response: Case 2 Critical Damping

For
$$
f(t) = Au_s(t) \rightarrow F(s) = A_s^{\frac{1}{2}}
$$

\n
$$
Y(s) = \left\{ \frac{P_5s}{(s-\alpha)^2} + \frac{P_6}{(s-\alpha)} \right\} + \eta \left\{ \frac{P_7s}{(s-\alpha)^2} + \frac{P_8}{(s-\alpha)} \right\} A_s^{\frac{1}{2}} \quad (3.62)
$$
\n
$$
= P_5 \frac{s}{(s-\alpha)^2} + P_6 \frac{1}{(s-\alpha)} \eta A P_7 \frac{1}{(s-\alpha)^2} + \eta A P_8 \frac{1}{s(s-\alpha)}
$$
\n
$$
\downarrow \qquad \qquad \downarrow \qquad
$$

$$
= -\frac{\eta AP_8}{\alpha} + \left(\frac{\eta AP_8}{\alpha} + P_6 + P_5\right)e^{\alpha t} + (\eta AP_7 + P_5\alpha)te^{\alpha t} \quad \text{as}
$$

Simulation: Case 2 Critical Damping

Response Comparison

- Over damped response is BIGand slow
- Critically damped response is small and FAST

Response: Case 3 Under Damped

- Case 3: $\sigma^2-\rho < 0, \; b < 2\sqrt{km} \implies^{\text{Weather damper}}_{\text{Complex Conjugate}}$ pair of poles
- *System poles*
- *Response*

(3.52),
\n
$$
Y(s) = \frac{y(0)s + [2\sigma y(0) + y'(0)]}{(s + \sigma - j\omega)(s + \sigma + j\omega)} + \frac{\eta}{(s + \sigma - j\omega)(s + \sigma + j\omega)}F(s)
$$
\n
$$
= \frac{K_1s + K_2}{(s + \sigma)^2 - (j\omega)^2} + \frac{\eta}{(s + \sigma)^2 - (j\omega)^2}F(s)
$$
\n
$$
= K_1 \frac{s}{(s + \sigma)^2 + \omega^2} + K_2 \frac{1}{(s + \sigma)^2 + \omega^2} + \eta \frac{1}{(s + \sigma)^2 + \omega^2} \frac{A}{s}
$$
\n
$$
= K_1 \left[\frac{s + \sigma}{(s + \sigma)^2 + \omega^2} - \frac{\sigma}{\omega} \frac{\omega}{(s + \sigma)^2 + \omega^2} \right] + \frac{K_2}{\omega} \frac{\omega}{(s + \sigma)^2 + \omega^2}
$$
\n
$$
\frac{\eta}{\omega} \frac{\omega}{(s + \sigma)^2 + \omega^2} \frac{A}{s}
$$
\n
$$
(3.65)
$$

