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1. Historical Control Systems: 
“feedback by design”

• 250 BC flow regulated water clock

– Ctesibius, a Greek Inventor
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• Self Re-filling mechanism (200BC)

– Philon, a Greek inventor
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1. Historical Control Systems:



• Weight Regulated Liquid Filling Device(1st Century AD)
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1. Historical Control Systems:

• Flyball Governor (James Watt  1788)

Steam Engine

Steam 

Generator

The first crude governors 

were working reasonably 

well. However, precisely 

machined governors showed 

unstable pressure oscillations 

in the steam generators. 
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1. Historical Control Systems:
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2. Mathematical Modeling of 
Plant/System

7

Plant Model: Mechanical System
• Shock absorber

• Spring resists displacement (reactive force is prop to displacement)

• Damper resists speed (reactive force is proportional to speed)

Second order model

(2.1)

Free body diagram
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Plant Model: Electrical System

• RC Circuit

First  order model
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What have we learned so far?

• System models are ordinary differential equations (ODEs).

• System complexity is represented by the model order

• The response (output) of the plant can be obtained by 

solving the model ODE for a given forcing function (input)

• Laplace transforms can be used to solve ODEs efficiently

Plant Model: Electrical System

(2.3)
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Laplace Transforms
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System Response with Laplace

• RC Circuit Model
– When transformed into Laplace domain L{ } - forward transformation

• Response (Method 1: Partial Fraction)
– When transformed back to time domain L-1{ } - inverse transformation

(2.3)

(3.47)

For DC Voltage

Partial fraction

(3.49)
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System Response with Laplace

• Transforming back to time domain

(3.47),
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Homogeneous Response Exogenous Response
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Response (Method 2: Convolution Integral)

M
a
tl

a
b

S
im

u
la

ti
o

n
: 

R
C

 C
ir

c
u

it

14

M
a
tl

a
b

S
im

u
la

ti
o

n
: 

S
te

p
 R

e
s
p

o
n

s
e

15

Observations and Conclusions

• Homogeneous response (Initial condition response) dies 

out leaving no remaining response in the long run. The 

time period where this response lasts is known as 

transient response.

• Exogenous response is what remains in the long run after 

transient time. This response finally remains as the steady 

state response.

• In order to understand the input output relationship, 

homogeneous response has to be removed. 
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System Response with Laplace

• Mechanical System Response

Where

• Transforming into Laplace domain

• There exist three different responses based on the 

determinant of the denominator polynomial (characteristic 

equation)

(2.2)

(3.51)
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System Response: Partial Fractions

• Case 1:

where                                     negative, real, distinct poles

Case 1: Partial Fractioning

where

(3.52)

initial conditions

and system parameters
system parameters

Poles are determined by the system parameters
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Using coverup method (see Appendix)

System Response: Partial Fractions

• Transforming back to time domain

Decay with time ‘cos ∝1∝2 are -ve
Steady-state 

response

Transient response
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System Response: Convolution Integral

• Case 1: Convolution Integral Method

where

(3.55),
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System Response with Laplace
• Transforming back to time domain

• For 

Steady-state response Transient response
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Steady State and Transient Responses

• Transient response

– Decaying response 

– Depends both on Initial conditions and external forcing function

• Steady State Response

– The sustainable response

– Depends on external forcing function
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Simulation:
Case 1: Over Damped Shock-Absorber
• System parameters

– Strong damper

– Speed is severely resisted

• Then, from (3.51)

• Consequently, the two system poles are

-ve real distinct poles
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m=50 kg

η=0.02

Matlab Code
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Matlab Code
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System Response 

• Case 2:

(3.52) →

where 

→ Real, -ve coincident poles
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IC and System System
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System Response: Case 2 Critical Damping

For

d()/ds
1/s

s

Response
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Simulation: Case 2 Critical Damping

Adjust (increase) spring 

constant to achieve critical 

damping

Poles

Deflection at steady state
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earlier

MatLab
Simulation

Critical Damping

• Fast response

• No overshoots

• Most energy 

efficient
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Response 
Comparison

• Over damped 

response is BIG
and slow

• Critically damped 

response is small

and FAST
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Response: Case 3 Under Damped

• Case 3:

• System poles

• Response

Weaker damper 

Complex Conjugate 

pair of poles

(3.52),
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but s => (s+σ) exponential scaling
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Response: Case 3 Under Damped Response : Case 3 Under Damped

• Decaying sinusoidal indicates an oscillation, which is a 

result of weaker damper to resist the speed

Steady state response

Case 1

Case 2

Case 3
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Refer Appendix 

for derivation

Under Damped 
Response

• Poles 

• Oscillatory due to 

dominant spring 

action

• Oscillation decays. 

Response is stable
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Oscillatory 
Response
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Response 
Comparison
• Critical damped and 

under damped 
responses are 
generally better than 
over damped response

• Overshoot is generally 
unacceptable in motion 
control systems 
(robots), however, 
some overshoot is 
acceptable in process 
control systems 
(temperature, pressure)

• Under damped 
response is the fastest  
in reaching the level
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